

Overview of I-WRF Container Architecture

Jared A. Lee & George McCabe (Presenters)
NSF National Center for Atmospheric Research

(On behalf of the entire project team from NSF NCAR & Cornell)

Application Containerization

- An application can be put into a software container with all associated libraries and support
- The containerized application is smaller than a virtual machine image, and portable to several systems
- I-WRF puts the application, data, and configurations into a portable package

I-WRF Conceptual Design

- The main change to this original concept diagram in our current implementation of I-WRF is that the visualization pieces are being done within the METplus validation container
- This way we only need to load in a Python environment in one container, not two

Weather Research and Forecasting (WRF) model

Nations with registered WRF users Nations where WRF has been run operationally

Source: Fig. 2 in Powers et al. (2017, BAMS)

Source: Fig. 7a in Lee et al. (2024, Solar Energy)

- WRF[®] is a weather model with a broad range of applications
 - Weather prediction, regional climate modeling, real or idealized case studies
 - Simulation of events based on characteristics such as land use or cover.
 - Chemistry/air quality, wildfire, renewable energy generation, hydrologic forecasting, crop growth modeling, aviation/turbulence, surface transportation, large-eddy simulation, and more
 - Validation and visualization tools for verifying and seeing results
- In development since 2000, with a user base of more than 30,000 worldwide
- Deployment across a wide range of HDC systems, so much as to be included in

WRF Challenges

- Despite this, around 50% of users attending tutorials at NSF NCAR report difficulty configuring the software for use on whichever computing platform they're using
- Compiling WRF software requires understanding multiple compiler frameworks, a set of required libraries to be built with the same compiler you select for WRF, and a wide range of WRF configuration options
- Need to know where to obtain data for initial conditions & lateral boundary conditions (ICs/LBCs), and observations for verification
- It usually requires some work to get verification and visualization tools configured to ingest WRF output
- These technical barriers mean that potential researchers and scholars run into hurdles before they can even get to the weather and climate stuff

Stanczyk, Jan Matejko, 1862. Wikimedia commons

https://www.istockphoto.com/signature/photo/thats-it-im-done-gm936117884-25607

Verifying Model Output with METplus

- Model Evaluation Tools (METplus) verification system
 - Community validation toolkit supported by NSF NCAR and largely developed by NSF NCAR
 - Developed through funding from the 557th Weather Wing of the U.S. Air Force, National Oceanic and Atmospheric Administration (NOAA), and NSF NCAR
 - Verification framework that spans a wide range of temporal (warn-on-forecast to climate) and spatial (storm to global) scales
 - Used operationally by NOAA, UK Met Office,
 Australian Bureau of Meteorology, and others
 - Large community of users & contributors
- METplus was already containerized
- I-WRF containerizes METplus configurations for doing some sample verification from the the various I-WRF use cases, and plots it

https://dtcenter.org/community-c ode/metplus

I-WRF Goals

Application containers support simplicity, portability, and scalability

- Run on a wide range of systems without installation/configuration issues
- Include data management and interoperability with validation and visualization tools
- Allow for large-scale problems with multi-node processing

Another goal is to bring more researchers into Atmoscience

- I-WRF allows a user to try WRF without dealing with installing and compiling software
- Model weather on your laptop, in the cloud, or on an HPC resource
 - Keep in mind, though, that your laptop doesn't have the computing horsepower
 of cloud or HPC resources, so the same simulation will take longer on a laptop

I-WRF Science Use Cases — Running at scale to answer research questions

- 0. Hurricane Matthew (initial simple demo of containers)
- 1. Land Use/Land Cover (LULC) Change in the U.S. Northeast and Feedbacks to Extreme Weather Events and Societal Impacts
- 2. Climate Change Impacts on Wind and Solar Energy Resources in the U.S.
- 3. Air Quality in the Northeast U.S. Urban Corridor in a Changing Climate

Supporting Broader Engagement in Atmospheric Science

- Users can run sample WRF simulations on a laptop or free cloud resource
- The first I-WRF sample simulation is an event used for the NSF NCAR Online WRF Tutorial: Hurricane Matthew (2016) event

- Making the WRF software both easier to run and relevant to:
 - Increasing recruitment into Atmospheric Sciences
 - Building a **pipeline** of researchers into the discipline from a range of backgrounds

I-WRF Hurricane Matthew Test Case Python Visualization

I-WRF Hurricane Matthew METplus Visualization

I-WRF ReadTheDocs Documentation

 User guide: <u>https://i-wrf.readthedocs.io/</u> <u>en/latest/Users Guide/index.</u> html

Running the Hurricane Matthew Use Case

```
OLISS (priority=1, resolution='default', path='/home/wrfuser/terrestrial_data/WPS_GEOG/orogwd3_10m/ol1ss/')
   OL2SS (priority=1, resolution='default', path='/home/wrfuser/terrestrial_data/WPS_GEOG/orogwd3_10m/ol2ss/')
   OL3SS (priority=1, resolution='default', path='/home/wrfuser/terrestrial_data/WPS_GEOG/orogwd3_10m/ol3ss/')
   OL4SS (priority=1, resolution='default', path='/home/wrfuser/terrestrial_data/WPS_GEOG/orogwd3_10m/ol4ss/')
   BATHYMETRY (priority=1, resolution='default', path='/home/wrfuser/terrestrial data/WPS GEOG/topobath 30s/')
   MH_URB2D (priority=1, resolution='', path='')
   ZD URB2D (priority=1, resolution='', path='')
   Z0_URB2D (priority=1, resolution='', path='')
   BUILD_AREA_FRACTION (priority=1, resolution='',
   LF URB2D S (priority=1, resolution='', path='')
   AHE (priority=1, resolution='', path='')
   AHE (priority=2, resolution='', path='')
Successful completion of geogrid.
MPI startup(): I_MPI_OFI_LIBRARY variable has been removed from the product, its value is ignored
Processing domain 1 of 1
Processing 2016-10-06_00
   FILE
Processing 2016-10-06_06
   FILE
Processing 2016-10-06 12
Processing 2016-10-06_18
Processing 2016-10-07_00
   FILE
Processing 2016-10-07_06
   FILE
Processing 2016-10-07_12
Processing 2016-10-07_18
Processing 2016-10-08 00
   FILE
Successful completion of metgrid. !
starting wrf task
starting wrf task
                           1 of
starting wrf task
starting wrf task
                           2 of
                           4 of
starting wrf task
                           6 of
starting wrf task
                           3 of
starting wrf task 5 of 8
starting wrf task 7 of 8
MPI startup(): I_MPI_OFI_LIBRARY variable has been removed from the product, its value is ignored
starting wrf task
                           0 of
                                           8
```

```
jaredlee@dec2343:/glade/derecho/scratch/jaredlee/iwrf_work> apptainer exec ${WORKING DIR}/iwrf-metplus.sif /metplus/METplus/u
sh/run_metplus.py /config/PointStat_matthew.conf
Starting METplus v6.0.0-rc1
Parsing config file: /metplus/METplus/metplus/parm/metplus config/defaults.conf
Parsing config file: /config/PointStat_matthew.conf
Logging to /data/output/logs/metplus.log.20250818211015
08/18 21:10:15.042Z metplus.1033ee1d INFO: Running METplus v6.0.0-rc1 as user jaredlee(14991) with command: /metplus/METplus/
ush/run_metplus.py /config/PointStat_matthew.conf
08/18 21:10:15.044Z metplus.1033ee1d INFO: Log file: /data/output/logs/metplus.log.20250818211015
08/18 21:10:15.044Z metplus.1033ee1d INFO: METplus Base: /metplus/METplus
08/18 21:10:15.044Z metplus.1033ee1d INFO: Final Conf: /data/output/metplus final.conf.20250818211015
08/18 21:10:15.044Z metplus.1033ee1d INFO: Config Input: /metplus/METplus/metplus/parm/metplus_config/defaults.conf
08/18 21:10:15.044Z metplus.1033ee1d INFO: Config Input: /config/PointStat matthew.conf
08/18 21:10:15.066Z metplus.1033ee1d INFO: Running wrapper: MADIS2NC(metar)
08/18 21:10:15.068Z metplus.1033ee1d INFO: * Running METplus MADIS2NCWrapper(metar)
08/18 21:10:15.068Z metplus.1033ee1d INFO: * at init time: 2016-10-06 00:00
08/18 21:10:15.069Z metplus.1033ee1d INFO: Processing forecast lead 0 hours
08/18 21:10:15.071Z metplus.1033ee1d INFO: COMMAND: /usr/local/bin/madis2nc /data/input/obs/metar/20161006_0000 /data/output/
madis2nc/metar/met_20161006_0000.nc -type metar -config /metplus/METplus/metplus/parm/met_config/Madis2NcConfig_wrapped -v 2
08/18 21:10:18.686Z metplus.1033ee1d INFO: Finished running /usr/local/bin/madis2nc - took 0:00:03.608394
08/18 21:10:18.687Z metplus.1033ee1d INFO: Processing forecast lead 1 hour
08/18 21:10:18.690Z metplus.1033ee1d INFO: COMMAND: /usr/local/bin/madis2nc /data/input/obs/metar/20161006_0100 /data/output/
madis2nc/metar/met_20161006_0100.nc -type metar -config /metplus/METplus/metplus/parm/met_config/Madis2NcConfig_wrapped -v 2
08/18 21:10:21.296Z metplus.1033ee1d INFO: Finished running /usr/local/bin/madis2nc - took 0:00:02.605761
08/18 21:10:21.297Z metplus.1033ee1d INFO: Processing forecast lead 2 hours
08/18 21:10:21.300Z metplus.1033ee1d INFO: COMMAND: /usr/local/bin/madis2nc /data/input/obs/metar/20161006_0200 /data/output/
madis2nc/metar/met_20161006_0200.nc -type metar -config /metplus/METplus/metplus/parm/met_config/Madis2NcConfig_wrapped -v 2
08/18 21:10:23.906Z metplus.1033ee1d INFO: Finished running /usr/local/bin/madis2nc - took 0:00:02.605675
08/18 21:10:23.907Z metplus.1033ee1d INFO: Processing forecast lead 3 hours
08/18 21:10:23.910Z metplus.1033ee1d INFO: COMMAND: /usr/local/bin/madis2nc /data/input/obs/metar/20161006 0300 /data/output/
madis2nc/metar/met_20161006_0300.nc -type metar -config /metplus/METplus/metplus/parm/met_config/Madis2NcConfig_wrapped -v 2
08/18 21:10:26.517Z metplus.1033ee1d INFO: Finished running /usr/local/bin/madis2nc - took 0:00:02.605745
08/18 21:10:26.517Z metplus.1033ee1d INFO: Processing forecast lead 4 hours
08/18 21:10:26.520Z metplus.1033ee1d INFO: COMMAND: /usr/local/bin/madis2nc /data/input/obs/metar/20161006_0400 /data/output/
madis2nc/metar/met_20161006_0400.nc -type metar -config /metplus/METplus/metplus/parm/met_config/Madis2NcConfig_wrapped -v 2
08/18 21:10:29.327Z metplus.1033ee1d INFO: Finished running /usr/local/bin/madis2nc - took 0:00:02.806033
08/18 21:10:29.327Z metplus.1033ee1d INFO: Processing forecast lead 5 hours
08/18 21:10:29.330Z metplus.1033ee1d INFO: COMMAND: /usr/local/bin/madis2nc /data/input/obs/metar/20161006_0500 /data/output/
madis2nc/metar/met_20161006_0500.nc -type metar -config /metplus/METplus/metplus/parm/met_config/Madis2NcConfig_wrapped -v 2
08/18 21:10:31.936Z metplus.1033ee1d INFO: Finished running /usr/local/bin/madis2nc - took 0:00:02.605705
08/18 21:10:31.937Z metplus.1033ee1d INFO: Processing forecast lead 6 hours
08/18 21:10:31.941Z metplus.1033ee1d INFO: COMMAND: /usr/local/bin/madis2nc /data/input/obs/metar/20161006 0600 /data/output/
madis2nc/metar/met_20161006_0600.nc -type metar -config /metplus/METplus/metplus/parm/met_config/Madis2NcConfig_wrapped -v 2
08/18 21:10:34.748Z metplus.1033ee1d INFO: Finished running /usr/local/bin/madis2nc - took 0:00:02.805935
08/18 21:10:34.748Z metplus.1033ee1d INFO: Processing forecast lead 7 hours
08/18 21:10:34.750Z metplus.1033ee1d INFO: COMMAND: /usr/local/bin/madis2nc /data/input/obs/metar/20161006_0700 /data/output/
madis2nc/metar/met 20161006 0700.nc -type metar -config /metplus/METplus/metplus/parm/met_config/Madis2NcConfig_wrapped -v 2
08/18 21:10:37.557Z metplus.1033ee1d INFO: Finished running /usr/local/bin/madis2nc - took 0:00:02.805948
08/18 21:10:37.557Z metplus.1033ee1d INFO: Processing forecast lead 8 hours
08/18 21:10:37.559Z metplus.1033ee1d INFO: COMMAND: /usr/local/bin/madis2nc /data/input/obs/metar/20161006_0800 /data/output/
madis2nc/metar/met_20161006_0800.nc -type metar -config /metplus/METplus/metplus/parm/met_config/Madis2NcConfig_wrapped -v 2
08/18 21:10:40.366Z metplus.1033ee1d INFO: Finished running /usr/local/bin/madis2nc - took 0:00:02.805913
08/18 21:10:40.366Z metplus.1033ee1d INFO: Processing forecast lead 9 hours
```

I-WRF Tutorial at MS-CC Workshop at Alabama A&M University

- Ben Trumbore (Cornell) and Jared Lee (NSF NCAR) gave an I-WRF Tutorial at an MS-CC Workshop in Oct 2024
- Mix of undergrads, grad students, & postdocs
- One student worked through the instructions himself that night at his hotel, and followed it without any issues

About Us ▼ Get Involved ▼ Community Resources ▼ News

Join

MS-CC Workshop: Campus Technology, Cybersecurity, & **Research Computing** Support

Alabama A&M University Oct 29-30, 2024

I-WRF Details

- Run it yourself on Derecho, Jetstream2, RedCloud2, or Windows: https://i-wrf.readthedocs.io/en/latest/Users s Guide/use-cases/matthew.html
- Overview website: https://i-wrf.org
- User guide:
 https://i-wrf.readthedocs.io/en/latest/Users
 Guide/index.html
- Github site: https://github.com/NCAR/i-wrf
- Help through help@cac.cornell.edu

Public I-WRF documentation website using Github and ReadTheDocs

Technical Organization via GitHub Projects

- Source code and documentation is stored in a GitHub repository
- GitHub issues are used to organize tasks
- Custom labels can be applied to issues to help categorize them
- GitHub Projects support multiple views of issues to track progress
- Views can include filtering by labels to view a subset of issues
- Views can be customized to show status, assignees, associated pull requests, etc.

I-WRF GitHub Project Board - All Deliverables View

 Created an issue for each project deliverable

Applied label
 type: deliverable
 to each issue

 Filtered issues with label type: deliverable

I-WRF GitHub Project Board - X.Y Deliverable View

 Created sub-issues for specific, assignable tasks

 Applied deliverable: X.Y label to related issues

 Quick view of status, assignee(s), relevant pull requests, labels, and other information

I-WRF GitHub Project Board - Deliverable Issue

1.2.1 Deliverable Issue:

 Recently, GitHub added the ability to define issue "relationship" to officially relate parent and sub-issues

 Sub-issues can now be viewed from the parent issue

I-WRF GitHub Project Board – Sub-Issue

 Issue details are provided using an issue template

Add comments to provide when updates and ask questions

 Can include links to other I-WRF issues or issues from external repositories

 Status of external issue can be easily viewed from I-WRF issue by mousing over link

METplus Development

- MET was enhanced to support reading WRF output files directly without using a Python script
- An issue in the MET repository was created to track this work

METplus Use Case

- METplus portion of the I-WRF Hurricane Matthew use case was added to the METplus use cases
- Contributes example of reading WRF into MET that is useful to the community
- Increases visibility of I-WRF project

★ / User's Guide / 7. METplus Use Cases / 7.2. Model Applications
/ 7.2.19.18. Tropical Cyclone and Extra Tropical Cyclone
/ PointStat: Hurricane Matthew I-WRF
View page source

Note

Go to the end to download the full example code.

PointStat: Hurricane Matthew I-WRF

model_applications/tc_and_extra_tc/
PointStat fcstWRF obsMADIS hurricane matthew.conf

- Scientific Objective
- Version Added
- Datasets
- METplus Components
- METplus Workflow
- METplus Configuration
- MET Configuration
- Python Embedding
- User Scripting
- Running METplus
- Expected Output
- Keywords

Scientific Objective

Perform verification of WRF data generated over Hurricane Matthew from 2016 using MADIS RAOB and METAR observation was created originally to serve the needs of the NSF-funded I-VVKF project (https://i-wrf.org). The goal of I-WRF is to create a series of

I-WRF DockerHub Repositories

- ncar/iwrf: WRF Container
 - Contains software requires to run WRF
 - https://hub.docker.com/repository/docker/ncar/iwrf
- ncar/iwrf-metplus: METplus Container
 - Contains METplus wrappers, MET C++ executables, METplus Analysis plotting tools, and WRF-Python package
 - https://hub.docker.com/repository/docker/ncar/iwrf-metplus
- ncar/iwrf-data : Data Volumes
 - Contains input data used to run I-WRF use cases
 - https://hub.docker.com/repository/docker/ncar/iwrf-data

I-WRF GitHub Project Board – Future Enhancements

- Milestones View groups issues by milestone
- Currently all remaining issues are listed under Future Enhancements
- Remaining issues will be moved to the appropriate milestone and assigned to I-WRF team members

Questions?

